Binary Classification from Positive-Confidence Data

TAKASHI ISHIDA II Univ. of Tokyo & RIKEN

GANG NIU II RIKEN

MASASHI SUGIYAMA II RIKEN & Univ. of Tokyo

30-Second Summary

- Question: Can we learn a binary classifier from only positive data?
- Even without any negative data or unlabeled data?
- Our answer: Yes!
- If you can equip positive data with confidence (positive-confidence), you can successfully learn a binary classifier with optimal convergence rate
- Binary classification from positive-confidence (Pconf) data:
- Propose a simple empirical risk minimization framework that is,
- model-independent and optimization-independent
- Theoretically establish the consistency and an estimation error bound
- Demonstrate the usefulness through experiments with deep neural nets

Ordinary classification Positive

Potential Applications

Marketing: Purchase Prediction

- Task: Predict if future customer will purchase your product or rival's product.
- Issue: You only have data of past customers who bought your product (P), and you cannot access rival company's data (N).
- Positive-confidence: You have survey data that asked past customers, how much they wanted to buy your product over rival product. (Normalize it to be probability.)

Web Developer: App User Prediction

- Task: Predict if an app user will continue using your app or unsubscribe in the future.
- Issue: Depending on the privacy/opt-out policy or data regulation, the company needs to fully discard the unsubscribed user's data (N). Developers will not have access to users who quit using their services.
- Positive-confidence: Associate a positive-confidence score with each remaining user by, e.g., how actively they use the app. (Normalize it to be probability.)

Related Works

One-class classification (anomaly detection)

- Designed for *describing* the P class (Not for *discriminating* P and N classes!)
- Many one-class methods are motivated:
- geometrically, by information theory, or by density estimation
- There is no systematic way to tune hyper-parameters to "classify" P and N samples

Posit

Positive-Unlabeled (PU) classification

- Uses additional unlabeled samples that are sampled from $p(oldsymbol{x})$
- Directly minimizes the binary classification risk without negative samples
- Requires class prior estimation, which is a difficult task
- Not necessary in Pconf classification!

Positive Unlabeled

Empirical Risk Minimization Framework

Basic Idea

- Only positive samples \rightarrow zero information of the negative distribution Ex) We don't know the direction of N compared to P distribution
- However, depending on the task, sometimes you can attach a confidence score: *Positive-confidence: 95% dog (5% wolf)*
- lacksquare Positive-confidence includes the information of the lacksquare distribution
- Will this allow us to learn a good binary classifier?

Pconf classification High confidence Low confidence Positiv

Problem Setting

- Goal is to minimize classification risk: $R(g) = \mathbb{E}_{p(m{x},y)}[\ell(yg(m{x}))]$
- We only have poonf data: $\mathcal{X}:=\{m{x}_i,r_i\}_{i=1}^n$ (\mathbb{E} is expectation, g is decision function)
- \boldsymbol{x}_i is positive data drawn from $p(\boldsymbol{x}|y=+1)$
- r_i is the positive-confidence given by $r_i = p(y = +1 | \boldsymbol{x}_i)$
- Issue: We can't directly employ the standard ERM approach!

Empirical Risk Minimization Framework

Theorem

The classification risk can be expressed as

$$R(g) = p(y = +1) \cdot \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell(g(\boldsymbol{x})) + \frac{1 - r(\boldsymbol{x})}{r(\boldsymbol{x})} \ell(-g(\boldsymbol{x})) \right]$$

if we have $p(y=+1|\boldsymbol{x})\neq 0$ for all \boldsymbol{x} sampled from $p(\boldsymbol{x})$.

- This means we can *directly minimize the classification risk* without access to any negative samples!
- This was *previously impossible* with only **hard-labeled** positive samples.
- Intuition: Positive-confidence includes the information of the negative distribution
- This allow us to discriminate between positive/negative classes

Comparing Proposed and Naïve Methods

Proposed Pconf Method

Weighted Naïve Method

$$\min_{g} \sum_{i=1}^{n} \left[\ell(g(\boldsymbol{x}_i)) + \frac{1 - r_i}{r_i} \ell(-g(\boldsymbol{x}_i)) \right] \qquad \min_{g} \sum_{i=1}^{n} \left[r_i \ell(g(\boldsymbol{x}_i)) + (1 - r_i) \ell(-g(\boldsymbol{x}_i)) \right]$$

- Naïve weighted method seems more natural and straightforward.
- However it is biased because the population version is not equal to the classification risk.

Theoretical Analysis

For any $\,\delta>0$, with probability at least $\,1-\delta$ (over repeated sampling of data for training $\,\hat{g}\,$), we have

$$R(\hat{g}) - R(g^*) \le 4\pi_+ \left(L_\ell + \frac{L_\ell}{C_r}\right) \Re_n(\mathcal{G}) + 2\pi_+ \left(C_\ell + \frac{C_\ell}{C_r}\right) \sqrt{\frac{\ln(2/\delta)}{2n}}$$

- $\blacksquare \hat{g}$: function that minimizes empirical risk $\blacksquare g^*$: function that minimizes true risk $\blacksquare \mathcal{G}$: function set
- $\blacksquare L_{\ell}$: lipshitz constant $\blacksquare \mathfrak{R}_n(\mathcal{G})$: Rademacher complexity of $\mathcal{G} \blacksquare \pi_+$: Positive class prior

Experiments

True Positive-Confidence

Weighted Regression O-SVM Supervised

- Various Gaussian distributions for the positive class and the negative class
 Analytically computed for p(y = +1|x) from Gaussian densities and used it
- Linear-in-input model: $g(x) = \alpha^{\top} x + b$, logistic loss: $\ell_{LL}(z) = \log(1 + e^{-z})$

Noisy Positive-Confidence

- Assuming we know the true positive-confidence exactly is unrealistic in practice
- As noisy positive confidence, we added zero-mean Gaussian noise with standard deviation chosen from {0.01, 0.05, 0.1, 0.2}.

Setup C

 $0.20 | 87.7 \pm 0.8 | 85.5 \pm 3.7$

 As the standard deviation gets larger, more noise will be incorporated into positive-confidence.

Setup A

 $0.20 | \overline{77.8 \pm 1.4} | 77.2 \pm 1.9$

_								
	Std.	Pconf	Weighted	Std.	Pconf	Weighted		
	0.01	89.8 ± 0.6	88.8 ± 0.9	0.01	92.4 ± 1.7	84.0 ± 8.2		
	0.05	89.7 ± 0.6	88.3 ± 1.1	0.05	92.2 ± 3.3	78.5 ± 11.3		
	0.10	89.2 ± 0.7	87.6 ± 1.4	0.10	90.8 ± 9.5	72.6 ± 12.9		
	0.20	85.9 ± 2.5	85.8 ± 2.5	0.20	88.0 ± 9.5	65.5 ± 13.1		
	Setup B				Setup D			
	Std.	Pconf	Weighted	Std.	Pconf	Weighted		
	0.01	81.2 ± 0.9	78.2 ± 1.4	0.01	91.6 ± 0.5	90.6 ± 0.9		
	0.05	80.7 ± 2.3	78.1 ± 1.4	0.05	91.5 ± 0.5	89.9 ± 1.2		
	0.05	00.1 <u>1</u> 2.0	10.1 1.1	0.05	01.0 ± 0.0	00.0 - 1.2		

20 trials, mean and standard deviation of the classification accuracy

Best and equivalent methods in red based on 5% t-test, excluding O-SVM & supervised

Benchmark Experiments

- Mean and standard deviation of the classification accuracy over 20 trials for the Fashion-MNIST and CIFAR10 dataset with deep neural networks
- Pconf classification was compared with the baseline Weighted classification method, Auto-Encoder method and fully-supervised method
- Obtained positive-confidence values through a probabilistic classifier trained from a separate set of positive and negative data
 "T-shirt" or "airplane" was chosen as the positive class for Fashion-MNIST and CIFAR10 respectively, and different choices for the negative class
- The best and equivalent methods are shown in red based on the 5% t-test, excluding the Auto-Encoder method and fully-supervised method

P / N	Pconf	Weighted	Auto-Encoder Supervised
T-shirt / trouser	$ \underline{92.14 \pm 4.06}$	85.30 ± 9.07	$ 71.06 \pm 1.00 98.98 \pm 0.16$
T-shirt / pullover	96.00 ± 0.29	96.08 ± 1.05	$ 70.27 \pm 1.22 96.17 \pm 0.34$
T-shirt / dress	$\mid \underline{91.52 \pm 1.14}$	89.31 ± 1.08	$ 53.82 \pm 0.93 96.56 \pm 0.34$
T-shirt / coat	$ 98.12 \pm 0.33$	98.13 ± 1.12	$ 68.74 \pm 0.98 98.44 \pm 0.13$
T-shirt / sandal	$\mid \underline{99.55 \pm 0.22}$	87.83 ± 18.79	$\mid 82.02 \pm 0.49 \mid 99.93 \pm 0.09$
T-shirt / shirt	$ 83.70 \pm 0.46$	83.60 ± 0.65	$ 57.76 \pm 0.55 85.57 \pm 0.69$
T-shirt / sneaker	$ $ 89.86 \pm 13.32	58.26 ± 14.27	$\mid 83.70 \pm 0.26 \mid 100.00 \pm 0.00$
T-shirt / bag	97.56 ± 0.99	95.34 ± 1.00	$\mid 82.79 \pm 0.70 \mid 99.02 \pm 0.29$
T-shirt / ankle boot	$ 98.84 \pm 1.43$	88.87 ± 7.86	$\mid 85.07 \pm 0.37 \mid 99.76 \pm 0.07$

P/N	Pconf	Waightad	Auto-Encoder	Cuparvised
P/N	Pcom	Weighted	Auto-Encoder	Supervised
airplane / automobile	82.68 ± 1.89	76.21 ± 2.43	75.13 ± 0.42	93.96 ± 0.5
airplane / bird	82.23 ± 1.21	80.66 ± 1.60	54.83 ± 0.39	87.76 ± 4.9
airplane / cat	85.18 ± 1.35	$\underline{89.60\pm0.92}$	$ 61.03 \pm 0.59$	92.90 ± 0.5
airplane / deer	$\mid \underline{87.68 \pm 1.36}$	$\underline{87.24 \pm 1.58}$	55.60 ± 0.53	93.35 ± 0.7
airplane / dog	$\mid \underline{89.91 \pm 0.85}$	$\underline{89.08 \pm 1.95}$	$ 62.64 \pm 0.63 $	94.61 ± 0.4
airplane / frog	90.80 ± 0.98	81.84 ± 3.92	62.52 ± 0.68	95.95 ± 0.4
airplane / horse	$\mid \underline{89.82 \pm 1.07}$	85.10 ± 2.61	67.55 ± 0.73	95.65 ± 0.3
airplane / ship	69.71 ± 2.37	$\underline{70.68 \pm 1.45}$	52.09 ± 0.42	81.45 ± 8.8
airplane / truck	81.76 ± 2.09	86.74 ± 0.85	73.74 ± 0.38	92.10 ± 0.8

